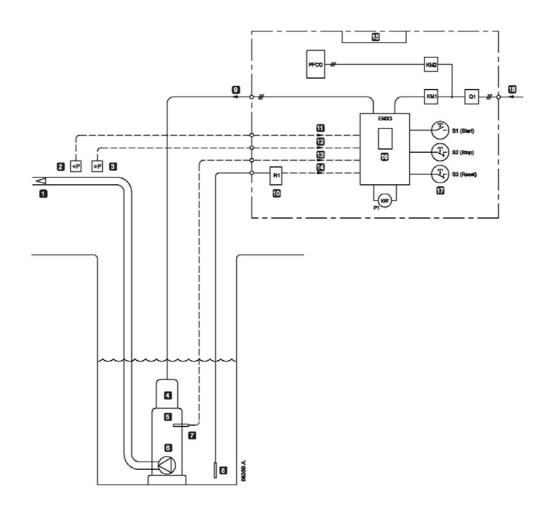
Применение ЕМХЗ в оборудовании для управления насосами.

Введение


Используя устройство плавного пуска EMX3 можно создавать законченные решения для управления насосами без применения дополнительных управляющих устройств.

Ниже приводятся те характеристики ЕМХЗ, которые делают его идеальным для управления насосами

- Разработанный компанией AuCom новый способ адаптивного управления ускорением (Adaptive Acceleration Control) может быть применён для оптимизации режимов включения и выключения насосов. В результате исчезают проблемы с бросками давления или клапанами в процессе старта или остановки.
- Современные возможности защиты мотора и насоса интегрированы в одном устройстве.
- Функции автоматического пуска и останова программируются с выносного пульта, при этом используется суточный таймер для предустановки времени работы насоса.
- Имеются программируемые входы для непосредственного подключения реле давления, потока, уровня. По срабатыванию таких устройств в EMX3 формируются аварийные сигналы, и на выносном пульте выводится соответствующие аварийные сообщения.
- Имеются входы для подключения стандартных термодатчиков (термисторов и термосопротивлений РТ100) нет необходимости в применении внешних термореле.
- Имеются програмимруемые релейные выходы для управления, индикации и блокировки.
- По аналоговому выходу (0-20mA / 4-20mA) выдаётся информация о величине тока, температуре мотора, полной и активной мощности, коэффициенте гармоник и напряжении.
- Плата расширения увеличивает число программируемых входов/выходов. Внимание: Эта опция необходима для наиболее полной реализации возможностей ЕМХЗ в насосном оборудовании.
- Выносной пульт с многофункциональным дисплеем (с защитой класса IP65) обеспечивает возможность размещения его на дверях оборудования, что позволяет реализовать на лицевой панели пульт управления оборудованием с амперметром, счетчиком наработки и кнопками управления старт/стоп /сброс.
- Внутренний байпасный контактор. Даёт возможность монтажа в полностью закрытом пространстве. Нет необходимости во внешнем контакторе.

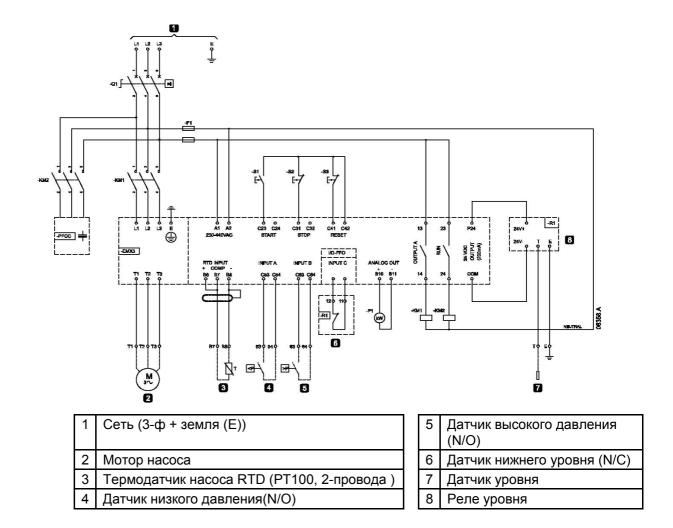

Типовое применение - насосное оборудование с погружным насосом.

Схема иллюстрирует, как EMX3 может применяться в насосной станции с погружным насосом. В данном примере используется EMX3 с трёхпроводной схемой управления с непосредственно подключенными реле, контактным датчиком уровня и терморезистором PT100, контролирующим температуру насоса. На лицевой панели установлен щитовой измеритель мощности, на который поступает сигнал с аналогового выхода EMX3. Используется компенсатор реактивной мощности , включаемый выходным реле EMX3.

1	Водопровод	7	Терморезистор (Pt100)	13	Температура насоса (Вход RTD)
2	Датчик низкого давления	8	Датчик уровня	14	Низкий уровень (вход С)
3	Датчик высокого давления	9	Питание мотора	15	Выносной пульт управления насосом
4	Мотор	10	Реле уровня воды	16	EMX3 клавиатура (с местным управлением и индикацией)
5	Hacoc	11	Низкое давление (Вход А)	17	Внешние кнопки
6	Обратный клапан	12	Высокое давление (Вход В)	18	Питающая сеть

Схема включения погружного насоса.

Руководство по монтажу и подключению.

Это руководство является общим и не служит инструкцией для конкретного оборудования. Ознакомьтесь с руководством по применению EMX3 при проектировании насосного оборудования.

- 1. Подсоединить силовые кабели.
- 2. Подсоединить провода управления. Подсоединить все внешние устройства ко входам и выходам (кроме датчика минимального давления ко входу А)
- 3. Подать управляющее напряжение к клеммам А3, А2 или А1, А2
- 4. Установить требуемую зависимость пуска и торможения в режиме адаптивного управления разгоном. Установить соответствующие значения параметров группы 1 (Данные мотора 1) и параметров группы 2 (Пуск/стоп мотора1).
- 5. Запрограммировать выходные реле и аналоговые выходы, используя параметры группы 7 (выходы)
- 6. Установить точку аварийного отключения по температуре используя параметры группы 11, (RTD Temperatures)

- 7. Запустить EMX3 при нормальной нагрузке и записать время, за которое будет достигнуто нормальное давление. Выключить EMX3. Использовать значение этого времени при программировании входа A (сигнал от датчика минимального давления). Выбрать параметр 6-С (ошибка по входу A) и параметр 6-Е (задержка по входу A)
- 8. Подсоединить датчик минимального давления ко входу А (клеммы С53 и С54). Запрограммировать функции вводов А и В в группе параметров (Входы) Внимание: Входы А и В используются дли ввода сигналов датчиков минимального и максимального давления и применяются для формирования аварийной функции ЕМХ3. Эти входы конфигурируются как нормально открытые или нормально закрытые, с соответствующими задержками на срабатывание. При их срабатыванию на дисплее устройства могут индицироваться соответствующие сообщения «Низкое давление», «Высокое давление». Внимание: Программируемый вход С должен использоваться для обнаружения низкого уровня воды и формирования аварийной функции ЕМХ3.

Контакты датчика должны быть нормально закрыты используя параметр 6-К (аварийные функции) вход С программируется, как «Аварийный стоп»

- 9. Установкой параметров группы 4 (Параметры защиты) настроить защиту ЕМХЗ.
- 10. Установкой параметров группы 8 (Дисплей) обеспечивается индикация пользовательской информации (ток, мощность время наработки, индикация состояния EMX3)
- 11. После этого возможна нормальная эксплуатация насосного оборудования